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Abstract—We have proposed earlier the incremental internode
communication method to reduce the communication cost as well
as the time of the learning process in artificial neural netwofrks
(ANNs). In this paper, the limited precision incremental commu-
nication method is applied to a class of recurrent neural networks,
the adaptive resonance theory 2 (ART2) networks. Simulation
studies are carried out to examine the effects of the incremental
communication method on the convergence behavior of ART2
networks. We have found that 7–13-b precision is sufficient to
obtain almost the same results as those with full (32-b) precision
conventional communication. A theoretical error analysis is also
carried out to analyze the effects of the limited precision incre-
mental communication. The simulation and analytical results
show that the limited precision errors are bounded and do not
seriously degrade the convergence of ART2 networks. Therefore,
the incremental communication can be incorporated in parallel
and special-purpose very large scale integration (VLSI) imple-
mentations of the ART2 networks.

Index Terms—Adaptive resonance theory 2 (ART2) networks,
artificial neural networks (ANNs), error analysis, finite precision
computation, incremental communication.

I. INTRODUCTION

THE COMMUNICATION complexity of artificial neural
networks (ANNs) is directly proportional to the number

of internode connections. To reduce the cost of interconnec-
tion as well as intercommunication, we have proposed the
incremental internode communication method [10]. In the in-
cremental internode communication, instead of communicating
the full magnitude of a variable, only the increment or decre-
ment to its previous value is sent on a communication link.
For example, assume that node has to communicate the
signal to node at different time instants. Further, assume
that is the output of node at time and is
its output at time . In the conventional communication,
the communication link will carry the value at time

. In contrast, in the incremental communication method
the communication link will carry the value , where

. At the receiving end, the value
will be obtained by adding to the previous

value stored at node . The incremental value can
be represented in either fixed- or floating-point format. The
fixed-point value may be represented in the integer or fractional
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form using a fewer number of bits (i.e., limited precision) than
full-precision used for the signal . In the floating-point rep-
resentation, few significant bits of the mantissa and full value
of the exponent are often used. When the incremental value

is limited to a smaller precision than the precision of ,
we denote the incremental value by . In this case, at the
receiving end we get which represents an approximated
value of .

The proposed incremental communication method would re-
sult in reducing the interconnection and intercommunication
costs by a factor , where represents the number of
bits used to represent the full precision value of a variable and

represents number of bits used to represent the limited preci-
sion incremental value, . For hardware implementations of
ANNs, only lines would be required for interneuron commu-
nications as compared to lines in conventional implementa-
tions. The incremental communication decreases the cost of in-
terconnection (i.e., number of lines in the communication link)
by an amount directly proportional to the magnitude of and the
number of interconnections. If bit-serial communication is used
with a single line between a pair of neurons, fewer steps would
be required for the incremental communication. The bit-serial
communication has been used in parallel computers based on
transputers [20] and the connection machine [18]. Alteratively,
if multiple neurons are mapped to each of the processors in a
parallel computer, the message lengths for interprocessor com-
munications could be reduced. Note that our discussion above
assumes that all operations inside a node are carried out with full
precision. However, as discussed in [10], the incremental com-
munication can be incorporated along with limited precision and
range strategies for interneuron connection weights suggested in
the literature [7], [14], [16]. The reduction in the communica-
tion cost of the incremental communication is at the expense of
additional memory and additional operations within neurons.

The effectiveness of the proposed communication scheme for
multilayer feedforward network architectures has been exam-
ined in previous works [10], [11]. It has been shown, that for
some problems even 4-b precision in fixed- and floating-point
representations is sufficient for the network to converge. With
8–12 b-precisions, almost the same results are obtained as those
with the conventional communication using 32-b precision [10].
The proposed method can lead to significant savings in the inter-
communication cost for implementations of ANNs on parallel
computers as well as the interconnection cost of very large scale
integration (VLSI) realizations.

Although the incremental communication method has been
found to be suitable for a class of supervised ANNs, namely,
the multilayer perceptrons, it is not known whether the method
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can be incorporated effectively into other supervised as well as
unsupervised ANN paradigms.

Adaptive resonance theory (ART) networks [1], [2] are un-
supervised ANNs that dynamically determine the number of
clusters based upon a “vigilance” parameter. There have been
some attempts to implement ART architectures on parallel ma-
chines and in VLSI [17]. Similar to multilayer perceptron, the
number of interconnections and the number of intercommuni-
cations are directly proportional to the number of nodes in the
comparison and recognition layers. Therefore, the reduction in
the communication and interconnection costs is desirable. The
limited precision incremental values cannot represent respective
variables accurately and therefore may affect the performance
(e.g., convergence quality and rate) of a learning algorithm,
either positively or negatively. In some cases, the limited preci-
sion incremental communication may result in smaller output
error since the representational errors may have positive as
well as negative values therefore some of the representational
errors may cancel each other. The main objective of this paper
is to incorporate the limited precision incremental communica-
tion method in an ART network and examine its convergence
behavior.

The paper is organized as follows. In the following section,
the ART2 architecture is first briefly reviewed. Subsequently,
modified node architectures using incremental communication
are presented. The incremental communication method is incor-
porated into the ART2 learning algorithm and simulation results
for a test problem are presented in Section III. A theoretical error
analysis of the effects of the limited-precision incremental com-
munication method on the behavior of the ART2 network is car-
ried out in Section IV. Finally, conclusions are given in the last
section.

II. ART2 NETWORKS

The basic principles of ART are given by Grossberg [12],
[13]. ART2 networks self-organize recognition categories in re-
sponse to analog as well as binary input patterns [1], [2]. In
the following subsections, we briefly review the basic concepts
and notations of ART2 networks. Subsequently, the architec-
tures of ART2 nodes incorporating incremental communication
are outlined.

A. Basic Concepts

ART2 networks consists of three fields: a preprocessing field
, a layer of processing units called feature representation field
, and a layer of output units called category representation

field . and are fully connected in both directions via
weighted connections called pathways. The set of pathways
with corresponding weights is called an adaptive filter. The
weights in the adaptive filter encode the long-term memory
(LTM) traces. Patterns of activation of and nodes are
called short-term memory (STM) traces. The connections
leading from to , and from to are called bottom-up
and top-down adaptive filters, respectively. There are also
corresponding bottom-up weights and top-down weights.

Fig. 1 illustrates the ART2 architecture used in this paper.
field has the same structure as that of field and both of

them have nodes. The th node in field only connects to
the corresponding th node in one direction, namely, from

to . The field preprocesses input patterns. Each input
pattern can be represented as a vector which consists of
analog or binary components ( ). Since there is
no significant advantage of using incremental communication
for binary input patterns, in this paper we consider only analog
input patterns for ART2 networks. The nodes of field are
numbered as , that is, the field consists
of nodes which are fully connected among themselves
in both directions [1].

The fields and , as well as the bottom-up and top-down
adaptive filters constitute the attentional subsystem of ART2
networks. An auxiliary orienting subsystem becomes active
when a bottom-up input to fails to match the learned
top-down expectation (vector is composed of
components, ( ) readout by the active
category representation at ). In this case, the orienting sub-
system is activated and causes rapid reset of the active category
representation in . This reset event automatically induces
the attentional subsystem to proceed with a parallel search.
Alternative categories are tested until either an adequate match
is found or a new category is established.

B. ART2 System Dynamics

We present here only those aspects of ART2 networks that
will be referred throughout this paper. For an in-depth, discus-
sion see [1]–[3].

1) Preprocessing Field : Each sublayer of the and
STM fields carries out two computations: the summation of in-
trafield and interfield inputs to the layer and the normalization
of the resulting activity vector. Equations (1)–(6) characterize
the STM activities, , , , , , and , computed at the
field

if is inactive
if is active

(1)

(2)

(3)

(4)

(5)

(6)

where denotes the norm of vector , the parameter is
set to 0 for simplicity and is the STM activity of the th
node. The nonlinear signal function in (3) is typically of the
form

if
if .

(7)

2) Input Representation Field : At the field, STM ac-
tivities , , , and , are the same as the corresponding
STM activities at the field. The other two STM activities,
and , are defined as

(8)

(9)
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Fig. 1. ART2 architecture used in the simulator (adapted from [5]).

3) Category Representation Field : One of the key prop-
erties of is the reset of active nodes that is carried out by
using a gated dipole field. The main elements of the dipole field
dynamics may be characterized as (10), shown at the bottom of
the page. If is inactive, all . An active com-
petitive field is said to be designed to make a choice if only one
node ( ) receives the largest total input from . In this
case, equals a constant .

4) ART2 LTM Equations: When makes a choice, if the
th node is active and is the winner node then the top-down

and bottom-up LTM trace equations for ART2 are given by

(11)

(12)

where . Note that on the right side of (11) and
(12) is a network parameter, and on the left side represents the
differential sign. These notations are the same as those given in
[1] and [2]. For all we get and .

We let the top-down initial LTM values satisfy

(13)

for and . This condition en-
sures that no reset occurs when an uncommitted node first
becomes active and therefore learning can begin.

5) Match and Reset: The vector monitors the degree of
match between the bottom-up input and the top-down
input . System reset occurs iff

(14)

where is a dimensionless vigilance parameter between 0 and
1. Vector obeys

(15)

where and . The norm of the vector is given by

(16)

where denotes the cosine of the angle between the
vector and the vector .

C. Node Architectures Using Incremental Communication

Since fields and are fully connected in both directions,
the ART2 network involves large amount of internode commu-
nication. Therefore, we propose the incremental communication
method for the internode communication between the and
fields. In the incremental communication method, all operations
inside a node are carried out using full precision. We have incor-
porated the incremental communication method into the ART2
learning algorithm and modified the architecture of the , ,
and nodes using incremental communication. Figs. 2 and
3 illustrate the node and the node architectures, respec-
tively, using the incremental communication method. In Fig. 2,
the incremental value is received from an node
given in Fig. 3 and the incremental value is sent
to other nodes. The function is used to truncate the
values of and to limited precision values

and , respectively. The and icons
represent the points of connections to operators within the
and nodes.

III. SIMULATION STUDIES

We have incorporated the incremental communication
method into the learning algorithm in order to investigate its
effects on the convergence behavior of ART2 networks. We
have implemented an ART2 simulator to investigate the effects
of the limited precision fixed- and floating-point incremental
values on the representational and convergence abilities of the
network. Note that incremental communication requires more

if : the th node has not been reset on the current trial
otherwise

(10)
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Fig. 2. F node architecture after the learning begins.

Fig. 3. F node architecture after the learning begins.

operations in a node to generate incremental values to be sent
to other nodes and at the receiving end these incremental values
are used to update the values of the corresponding variables.
This implies that the execution time per iteration will increase.
However, in parallel implementation the communication cost
will be reduced by using incremental communication method.
In our previous work, we have found that the reduction in the
communication cost results into overall speedup (for details see
[10]).

In our simulation studies, we compare the performance of
the conventional (standard) and incremental communication
methods using the number of iterations for convergence as a
metric (as commonly used by many researchers) rather than

the execution time on a particular computer. It is well known
that measuring the actual simulation time may not be a good
indication of the performance due to many factors (for example,
CPU architecture, cache, and main memory characteristics).

This simulation is based on the simulation program given in
[9]. The ensuing subsections describe the simulator character-
istics, the test problem chosen for the simulation studies, and
various simulation parameters. Subsequently, we present simu-
lation results for two sets of experiments.

A. ART2 Simulator

The learning rule used in the simulator is the slow learning
rule, meaning that the weights are updated by integrating the
differential (11) and (12). The conventional (standard) as well
as the incremental communication methods are implemented. In
the conventional communication, all the parameters are repre-
sented in full precision (32 b), whereas in the incremental com-
munication method all incremental values are represented with
reduced precision. The network parameters as well as the con-
vergence criterion value can be set by the user. The convergence
criterion value is chosen so that all the input patterns are learned.

When a limited precision is used to represent the argument
in (7), it is possible that the function will lose its smoothness
and become piecewise linear. It is anticipated that this will affect
the network convergence.

The incremental values can be represented using fixed- and
floating-point representations. With the fixed-point representa-
tion, the position of the binary point is determined by the user
based on the problem chosen. In the floating point representa-
tion, few significant bits of mantissa and full 8-b value of the
exponent is used.

The simulation is primarily based on the standard ART2
algorithm. The input from the preprocessing field to the
field is fed through three sublayers and is modified at each
step. These steps perform normalization, contrast enhancement
and noise suppression of the input before it is fed to the output
field for competition. When an input from is filtered
through the feedforward connections, competitive learning takes
place in the nodes. A winner is decided by comparing
the activations produced among all the nodes. The best
matching vector is now passed back to . The reset rule
defined in (14) is applied. If no reset occurs, the top-down
and bottom-up weights are modified according to (11) and
(12). Otherwise, the best matching node is disabled, the system
is reset, and the whole process is repeated. If all nodes in
become disabled a new node is created.

The simulation experiments consist of training an ART2
network using the conventional and the incremental commu-
nication schemes while varying the precision of the incre-
mental values of selected STM variables (namely, and

, ) and top-down as well as bottom-up LTM
variables.

B. Test Problem and Simulation Setup

The test problem chosen for simulation is composed of 50
analog input patterns which are designed to be similar to the
50 patterns given in [2, Fig. 1]. For details of these patterns
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please refer to [8, App. 1] and http://www.cs.unb.ca/profs/ghor-
bani/art-data.html. Each input pattern is considered as a vector

, where .
The learning goal is to cluster the given input patterns into

recognition categories. The patterns that are grouped in the same
category usually share some common features. The number of
categories obtained may change with different network param-
eters. We use two sets of network parameters for simulation ex-
periments. Two sets of experiments (Experiments 1 and 2) are
carried out. The values of all system parameters for the two sets
of experiments are chosen to be equal, except for the threshold
( ) and vigilance ( ) parameters. For each set of experiments,
we use the same network parameters and vary the type (fixed
or floating-point) as well as the precision of the incremental
values; however, these two sets of experiments use different net-
work parameters. The absolute average discrepancy between the
top-down expectations (i.e., the final top-down vectors for the
established category after the network converges) of the con-
ventional and the incremental communication is referred to as
the error in the following subsections.

For the ART2 network using the conventional communication
method, we have selected the architectures and parameters that
give good performance. To have comparable results, the same
parameters and architectures are also used with the incremental
communication method. For the fixed-point representation we
use 2 b to the left and b to the right of binary point (i.e., a total
of b are used). For the floating-point representation we
use 8 b for the exponent and b for the mantissa (i.e., a total of

b are used). In our experiments, the value of is varied
from 2 to 20 in the step of one bit at a time.

For our experiments, we chose some of the parameters as fol-
lows: , , and . For Experiment 1,
the vigilance parameter is selected to be the same as given in
[2], . Note that in all graphs presented in this paper the
precision represents the value .

C. Experiment 1

For this experiment we set the threshold to . The
training is considered complete when the category structure
established on one complete presentation of the 50 inputs
remains stable thereafter. When the network converges, the 50
input patterns are classified into 14 recognition categories for
both conventional and incremental communication methods. It
would not be surprising if in some cases one obtains different
number of recognition categories.

Fig. 4 represents the error as a function of the precision
of fixed- and floating-point representations. Initially, as the
precision of incremental values increases, the error decreases
quickly. The error with the floating-point representation is
consistently lower than that with the fixed-point representation.
This is expected since the floating-point representation allows
a large dynamic range of values.

Fig. 5 depicts the total number of iterations required by
the network to converge using conventional and incremental
communications with various precisions. It is seen that the
number of iterations required for the floating-point represen-
tation is always close to that for the conventional commu-
nication. When more than 8 b are used for the fixed-point

Fig. 4. Error in top-down expectations.

Fig. 5. Total number of iterations.

representation, the number of iterations is always close to,
and sometimes even smaller than, that for the conventional
(standard) communication.

The increase/decrease in the computation and communication
costs for selected precisions are given in Table I. In the
table, the variable represents the increase/decrease in
the communication time. The variables , and
represent the increase/decrease in the computation time for
Experiments 1 and 2, respectively. Note that a negative value
indicates the decrease, and a positive value denotes the increase
in time. It is seen that the use of incremental communication
results in substantial savings in the communication time with
very small, if at all, increase in the computation time. For
the floating-point representation, 5-b mantissa is found to be
enough to obtain the same recognition categories as those with
the conventional communication method. For the fixed-point
representation the precision of 6 b is found to be adequate
to obtain the same recognition categories as those with the
conventional communication.
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TABLE I
PERCENTAGE INCREASE/DECREASE IN THE COMPUTATION AND

COMMUNICATION TIMES FOR EXPERIMENTS 1 AND 2

and represent the computation time for Exper-
iments 1 and 2, respectively.

D. Experiment 2

For this experiment, we chose which is slightly
below that for Experiment 1 and which is a little
higher than that for Experiment 1. In this case, the input patterns
get classified into 21 categories compared to 14 categories for
Experiment 1. This is mainly due to the higher value of vigilance
( ). For both representations gives the same recognition
categories as those with the conventional communication.

Figs. 6 and 7 show the error and the total number of itera-
tions required by the network to converge using the conventional
and the incremental communications with various precisions.
Table I gives increase/decrease in the computation and commu-
nication times for the two number representations.

IV. ERROR ANALYSIS

The incremental communication is implemented by limiting
the precision used for the values that are communicated between
various nodes. Limited precision reduces the accuracy and may
affect the performance of an ANN learning algorithm. Note that
in the incremental communication method all operations inside
a node are carried out using full precision. In this section, we
investigate the effects of limited precision incremental commu-
nication method on the convergence behavior and performance
of ART2 networks.

First, various possible sources for error are briefly discussed.
Subsequently, we consider the ART2 dynamics and analyze
error generation and propagation during the training of ART2
networks. Two similarity measures are introduced and the
changes in weights during the learning phase are compared
between the conventional and the incremental communication
schemes.

A. Sources of Errors

The limited precision error in computations falls into
two main categories: the generated error and the propagated
error [11], [19]. The generated error depends on the methods
(e.g., truncation and roundoff) used to obtain limited precision
incremental values. The propagated error is the error in the
value of a function due to the error in its arguments. The
propagated error increases with the number of operations. If
the value of a variable is truncated to obtain a reduced
precision variable , the generated error is . If the
precision used for the incremental values is b, the magnitude

Fig. 6. Error in top-down expectations.

Fig. 7. Total number of iterations.

of the maximum generated error is equal to . In the ensuing
analysis, we consider the limited precision error to be a discrete
random variable distributed over a range determined by the
number of truncated bits (digits).

We assume that the limited precision errors have the fol-
lowing properties:

1) is a stationary random limited precision process;
2) limited precision errors are independent of each other;
3) limited precision errors are uncorrelated with the in-

puts/outputs;
4) limited precision errors are uniformly distributed.
Suppose that each component ( ) of a vector
has an error and these components are used to compute

the function , where is the norm of .
Assuming that the errors are independent and random, then the
error in is given as [19, pp. 13]

(17)
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We denote

Lemma 1: The error in is

(18)

Proof: The partial derivatives in (17) are given as

and

Therefore

Simplifying we get

If then can be omitted. In this case, we obtain
the upper bound of as

From the above lemma, it is seen that the error propagated by
the normalization function is always less than or
equal to the normalized maximum of its input errors.

B. Analysis of ART2 System Dynamics

The ART2 module considered here includes the principal
components of all ART modules, namely, an attentional sub-
system, which contains an input representation field and a
category representation field , and an orienting subsystem
which interacts with the attentional subsystem to carry out an
internally controlled search process. The two fields are linked
by both a bottom-up adaptive filter and top-down

adaptive filter. A path from the th node to the
th node contains an LTM trace, or an adaptive bottom-up

weight, , a path from the th node to the th node that
contains a top-down weight . These weights multiply path
signals between fields.

Table II summarizes STM activities for the first three iter-
ations based on (1)–(9). It is seen that after the second iteration
all STM activity values do not change, which implies that all
nodes are converged. This allows normalized (i.e., vector )
to be used as an input to the orienting subsystem. As a result,

does not change when becomes active and provides
stable inputs to the orienting subsystem throughout the trial.

All STM nodes remain proportional to so long as
remains inactive. Vectors and are amplified by intrafield
feedback, and . Thus, has invariance
property when is inactive. The STM activity values in the

TABLE II
F STM ACTIVITIES IN ITERATIONS 1, 2, AND 3

TABLE III
F STM ACTIVITIES IN ITERATIONS 1 AND 2

first two iterations are summarized in Table III. Subsequently,
an uncommitted node becomes active (i.e., there are nonzero
top-down weights from to ). The LTM trace can be
obtained by solving the (11) as

(19)

where is the initial value of and represents the discrete
time step. In the simulator, is set to zero when a new category
is established. All STM activity values of the field, except

, do not change during the successive iterations. Based on (1)
and (19) is given as

(20)

In the simulator slow learning rule is used and the weights are
updated by integrating the differential (11) and (12). The differ-
ential equations for the weights are solved using a fourth-order
Runge–Kutta solver with a fixed step size ( ) and net-
work parameter as is used for computational experi-
ments. This solver is described as the following:

(21)

In this case, at time is given as

(22)

where and .

C. Analysis of ART2 Training

The incremental communication method is used with the
and fields. To compute the top-down weights STM activity
values of nodes are needed for computations in nodes and
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Fig. 8. Analytical errors in p , q , u , and r versus the number of iterations
for 10-b precision.

these top-down weights are in turn required to compute STM
activity values of nodes. In the training phase, errors due to
the incremental communication get propagated through itera-
tions. In the following subsection, error analysis of the first two
steps is given. We assume that limited precision fixed-point in-
cremental values are used. Subsequently, we analyze errors for
a general case.

1) Error Analysis of the First Two Iterations: We consider
the case of establishing a new category. To update value,

will be sent from to [see (22)]. According to the
Runge–Kutta solver when it is the first time to update , the
total error propagated to the th node of is

where represents the function that converts to the
limited precision fixed-point value . For -bit fixed-point
representation we obtain

Let represent the approximated value of at the first
iteration. Based on (22), the error in is given as

Note that .
To compute the STM activity value represented by

( ), needs to be transmitted from to .
The reduced precision value of , denoted by , will be sent
to an node. Therefore

where the generated error

Fig. 9. Analytical errors in top-down weights as a function of the function of
the number of iterations and precision.

The total error in a top-down weight is . Since
there is no error in for the first iteration, based on (1) and
(10), the error in is

According to (2) and Lemma 1, the propagated error in is

Since for the first iteration there is no error in , by (3) the error
in is given as

Similar to (4) and (15), the propagated errors in and are

and

In the second iteration, at the time of updating , note that
both and have been contaminated by errors. Therefore,
based on (22) we have

According to the analysis of STM activities given in the
previous subsection, we get and . The
propagated errors in , , , and are also affected
by in addition to other errors in the first iteration. Thus
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Fig. 10. Euclidean distance and angle between top-down expectation vectors with fixed-point incremental communication and those with conventional
communication in Experiment 1.

Fig. 11. Euclidean distance and angle between top-down expectation vectors with floating-point incremental communication and those with conventional
communication in Experiment 1.

2) Error Analysis for the th Iteration: In successive iter-
ations, the errors in the STM activity values of nodes for
the successive iterations can be derived similar to those for the
second iteration

(23)

where for STM activities we assume that ,
, , , and .

Since the fourth-order Runge–Kutta solver is used in the sim-
ulator and , by (22) the top-down weight values in
the th iteration can be obtained as

(24)

Therefore the norm of top-down weights in the th iteration is
given as

(25)

By (1), (10), and (24) the norm of vector for the th iteration
is given as

After applying successive operators, the final errors in and
can be expressed as

(26)

(27)

where and .

From (23) and (27), it is seen that the magnitude of errors in
, and therefore in , are increasing functions of the number

of iterations. The growth can be serious if the number of iter-
ations is very large or the precision used is too low. Equations
(26) and (27) give the maximum possible errors if and only if
all the errors on the right sides of the equations are the largest
possible errors and they have the same signs. It is very unlikely
that both conditions are satisfied at the same time. Moreover, in
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Fig. 12. Evolution of top-down weight norm with incremental and
conventional communications for the pattern which accesses an uncommitted
F node in Experiment 1. (a) Fixed-point communication. (b) Floating-point
communication.

practice the errors could be of opposite signs. All these factors
might contribute toward good convergence behavior of incre-
mental communication.

Through the analysis given above we can see that the propa-
gated error caused by normalization does not enforce instability.
The errors computed based on the equations derived in this
section are referred to as analytical errors. Fig. 8 depicts the
relation among the errors in , , , and for 10-b precision.
According to (2) and (15) is obtained by normalizing vector

, and is computed by normalizing vectors and . The
errors in and are much less than that in . The error in

is almost the same as that in . This is reasonable since
for conventional communication and should have the
same value during the learning process as shown in Table III.

Fig. 13. Evolution of top-down weight norm with incremental and
conventional communications for the pattern which accesses a committed F
node in Experiment 1.

As the precision increases, the errors in STM activities and
weights should decrease as discussed previously in this section.
This is observed for the analytical error of the top-down weights
given in Fig. 9.

The above error analysis assumes a learning process during
which a new category is established. When an established cat-
egory is chosen, the value of in (19) is not zero and
is close to at the beginning as well as at the end of
its learning trial. In this case, although vectors , , , and
are not exactly equal to vector , their values are close to the
value of . Moreover, the number of iterations required by the
network to converge is less than that for establishing a new cat-
egory. Therefore, when an established category is chosen, the
learning process can be seen as the adjustment of the weights for
a few more iterations and following the learning process of the
input pattern which accesses the same category most recently. In
the following subsection, this is tested by analyzing the learning
process of a selected pattern.

D. Simulation Results

We examine the incremental communication method with
respect to the changes in the weights during learning and
closeness of weight vectors with those of the conventional
communication. Simulations are performed for two sets of
network parameters. The results obtained with various limited
precisions incremental communication are compared with those
for the conventional communication.

Two similarity measures are used. The first similarity mea-
sure is the Euclidean distance between weight vectors. The
Euclidean distance between two weight vectors and
with cartesian coordinates is
obtained by
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Fig. 14. Euclidean distance and angle between top-down expectation vectors with fixed-point incremental communication and those with conventional
communication in Experiment 2.

Fig. 15. Euclidean distance and angle between top-down expectation vectors with floating-point incremental communication and those with conventional
communication in Experiment 2.

The second similarity measure calculates the angle ( ) between
two weight vectors and as

Since two weight vectors may not have the same length, the
dot product fails as a measure of similarity. However, when
the angle between two weight vectors is accompanied with
their Euclidean distance, one can clearly asses their closeness
or similarity.

Experiment 1: The convergence behavior for the test
problem given in Section III is examined using the incre-
mental as well as conventional communication methods for
two selected patterns. To examine the effect of large number of
iterations on the propagated error we have chosen a pattern that
requires large number of iterations. For ART2 networks the
number of learning iterations required by an uncommitted
node is much larger than that required for a committed node.

Fig. 10 gives plots of the Euclidean distance and the angle
between 14 top-down expectations for the incremental fixed-
point communication versus the conventional communication.
Fig. 11 shows similar results for the floating-point representa-
tion. The floating-point representation is found to have better
performance than the fixed-point representation.

Fig. 12 shows the evolutions of the top-down weight norm for
the selected pattern accessing an uncommitted node during
the learning phase. With 8-b fixed-point and 6-b floating-point

precisions we obtain almost the same behavior as that with the
conventional communication.

Fig. 13 gives the evolutions of the top-down weight norm for
the selected pattern accessing a committed node. It is seen
that when we use 8-b floating-point and 10-b fixed-point repre-
sentations for the weights we obtain almost the same behavior.

Experiment 2: The plots of the Euclidean distance and the
angle between top-down expectation vectors for the fixed-point
and floating-point representations of incremental communica-
tion and the conventional communication are given in Figs. 14
and 15, respectively. The trends in the weights for the in-
cremental and the conventional communication methods are
generally similar. This implies that in the incremental commu-
nication the weight adjustment rule modifies the weights in the
same direction as that of the conventional communication. A
comparison of the two figures shows that the top-down expec-
tation vectors for the floating-point representation are always
closer to those obtained with the conventional communication.

The evolutions of the top-down weight norm for the selected
pattern accessing an uncommitted node during the learning
phase is shown in Fig. 16. It is seen that with 8-b fixed-point
and 5-b floating-point precisions we obtain almost the same be-
havior as that with the conventional communication.

Fig. 17 gives the evolutions of the top-down weight norm
for the selected pattern accessing a committed node. It is
seen that we obtain almost the same behavior when we use 8-b
floating-point representation and 10-b fixed-point representation
for the weights. We can see that the length of the weight
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Fig. 16. Evolution of top-down weight norm with incremental and
conventional communications for the pattern which accesses an uncommitted
F node in Experiment 2.

vector is the main difference between the conventional and
incremental methods. Note that the weight vector norm of the
10-b fixed-point representation is closer to the norm of the
conventional weight vector as compared to the 8-b floating-point
representation.

Simulation and analytical results have shown that the errors
due to the limited precision incremental communication do not
cause serious network performance degradation. In other words,
the limited precision incremental communication method al-
lows network convergence without inducing instabilities and ex-
cessive increase in computation time.

The simulation results given in this paper are based on slow
learning method. The incremental communication method can
also be used with the fast learning method. In fast learning, the
speed of learning is high enough so that weights can reach their
asymptotic values while the current input is presented. However,
it is known that fast learning is not able to smooth out noise and
may result in over-fitting. Since incremental communication in-
troduces errors which could be considered as noise, we suspect
that the use of incremental communication with ART2 using
fast learning may not produce similar results as conventional
communication.

V. CONCLUSION

In this paper, the incremental communication method is used
to reduce the communication and computation costs of ART2

Fig. 17. Evolution of top-down weight norm with incremental and
conventional communications for the pattern which accesses a committed F
node in Experiment 2.

networks. In the incremental intercommunication, instead of
communicating the full magnitude of a variable only the incre-
ment or decrement of its previous value is sent on a communi-
cation link. A simulator is developed to investigate the behavior
and convergence ability of ART2 networks using limited preci-
sion incremental communication.

Simulation results with slow learning show that the increase
in the number of iterations required by the network is small
when the incremental communication is used. In some cases
with an adequate number of bits, the required number of iter-
ations is very close to, or sometimes even smaller than, that
for the conventional communication. It is demonstrated that
the communication costs are reduced by the limited precision
incremental communication method. Simulation studies should
be carried out using fast learning. Furthermore, incremental
communication can be applied to other types of ART networks
that use analog (real-valued) input patterns (e.g., ARTMAP
[4], Fuzzy-ART [5], Fuzzy-ARTMAP [6], and fuzzy lattice
neurocomputing (FLN) [15]).

A theoretical error analysis is carried out to analyze the effects
of limited precision error. The error propagated by the normal-
ization function is found to be always less than or equal to the
normalized maximum of its input error. The effects of limited
precision error on the orienting subsystem is found to be very
minor. This allows us to argue that the normalization and non-
linear feedback processes are unlikely to cause instability in the
network. The analytical results are in general agreement with
simulation results.

The incremental communication method reduces the com-
munication cost significantly. Therefore, the method is attrac-
tive for parallel and special-purpose VLSI implementations of
ART2 networks. The trends of the simulation and analytical re-
sults in this paper are almost the same as those in our previous
work on feedforward neural networks. Thus, the incremental
communication method is suitable for feedforward as well as
recurrent neural networks.
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